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Abstract - A new algorithm for the multiprocessor computation of the multidimen-
sional discrete Fourier transform is presented. The algorithm eliminates the need for
interprocessor communication and is highly scalable. The cost of eliminating interpro-
cessor communication by this method is that one addition must be performed at each
processing element for every input loaded into the machine.

The algorithm is based on a new multidimensional discrete Fourier transform algo-
rithm that computes a d—dimensional discrete Fourier transform by a set of indepen-
dent k—dimensional discrete Fourier transforms (k < d); it is a reduction algorithm in
the sense that it has lowered the dimension of the Fourier transforms that are com-
puted. The k—dimensional discrete Fourier transforms are performed on data derived
from the input using only additions, and produce k—dimensional hyperplanes of the
output array. _

The mapping of the algorithm onto architectures with broadcast and report capa-
bilities is given. Expressions are obtained for estimating the speed on these machines
as a function of the size of the d—dimensional DFT, the bandwidth C of the communi-
cations channel, the time A for an addition, the time T(FFT) for a single processing
element to perform a k—dimensional DFT (k¥ < d), and the degree of parallelism of
the machine. For single I/O channel machines that are capable of exploiting the full
degree of parallelism of the algorithm, execution times as low as the time required to
compute a single k—dimensional DFT plus the I/O time for data upload and download
are attainable.
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Chapter 1

Program Overview

This program presents a new algorithm for the multiprocessor computation of the multi-
dimensional discrete Fourier transform (MD DFT). The main features of the algorithm
are: (1) that it requires no interprocessor communication, and (2) that it is highly
scalable. The cost of eliminating interprocessor communication by this method is that
one addition must be performed at each processing element for each input broadcast
to the machine.

The motivation for this research program has been the development of algorithmic
methods that can exploit the power of VLSI based multiprocessors. These machines
have large computational capabilities but limited communication bandwidth. They
strongly favor algorithms that minimize interprocessor communications. This principle
of locality [32] dominates algorithm design at all levels.

Multidimensional Cooley-Tukey algorithms, and their variants, require interproces-
sor communication because they partition the data set at every stage of the compu-
tation. At a minimum this necessitates an interprocessor communication requirement
where every processing element must exchange data with every other processing ele-
ment to complete the calculation.

Most parallel algorithms for MD DFT computation attempt to minimize the in-
terprocessor communications requirement inherent in Cooley-Tukey methods. This
research program has taken a new approach. The algorithm presented does not apply
a partition to the input data. Rather, it performs a reduction operation in parallel
on the data. This reduction requires each processing element to perform one addition
for each word loaded into the machine. The computation is completed by performing
lower-order/lower-dimension MD DFT on the data, derived by the additions, at each
processing element. For a d—dimensional DFT each processor would be required to
compute a k—dimensional DFT where k is one of k =0,1,...,d — 1 depending on the
degree of parallelism of the implementation. The algorithm eliminates the requirement
of the interconnection network that typically dominates parallel computation of the
MD DFT at a cost of one addition at each processing element for each word loaded
into the machine.

The algorithm is based on a parallelization of the hyperplane algorithm for MD
DFT computation presented in chapter 2. Two modes of parallelization are considered.
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The first is a direct approach given in chapter 3. In this form the algorithm requires
no interprocessor communication, however it is not scalable. A hybrid approach that
marries multidimensional Cooley-Tukey type methods with the hyperplane algorithm
is presented in chapter 4. The resulting hybrid algorithm requires no interprocessor
communication and is highly scalable.

1.1 Applications

Computations that requires fast execution of MD DFT are well suited to parallel meth-
ods. Computational techniques based on conventional methods require extensive in-
terprocessor communication which in turn require an interconnect network between
processing elements. Interconnect networks are slow, large, expensive, and consume
large amounts of power.

The hardware requirement for parallel MD DFT computation is drastically reduced
by the elimination of the communication interconnection network. This allows low cost,
low power, and small size machines to compute MD DFT at high speed.

In order to exploit the method developed in this program, the data flow of the
target problem must match that of the algorithm. One such problem is the processing
of synthetic aperture radar (SAR) data. SAR is an airborne radar imaging technique
that generates high resolution terrain maps by processing radar returns [20]. A well
known method of SAR image reconstruction interprets the SAR data as samples of
the Fourier transform of the targeted terrain. The image is reconstructed by inverse
transforming the sampled Fourier data. The realtime computation of the SAR image
using this technique requires the realization of large scale 2D DFT and interpolations.
Under current technology, parallel computation is required to achieve high resolution
in realtime or near realtime. Realtime systems based on conventional digital signal
processing techniques require extensive interprocessor communication to compute the
2D DFT. The required communication networks greatly increase the size, cost, and
power consumption of those computing structures.

By the method developed in this research program, this complex structure could
be replaced by a multiprocessor with only broadcast communications. The Fourier
domain samples could be broadcast to a collection of processing elements where they
are transformed into the spatial domain by the method described in this research. After
the computation is completed, the image data would be distributed in the machine in
the same manner as if a vector-radix MD DFT were employed.

Currently other applications are being vigorously explored to determine how suit-
able they are for multiprocessor computation by the method developed in this research
program.




Implementations

For proof of concept a variant of this algorithm was implemented on the AT&T BT100
(2] multiprocessor. The implementation was benchmarked over ten times faster then
a row-column 2D DFT of the same size on the machine. The cause of the dramatic
difference in speed is that on the BT100 communication is much slower than compu-
tation.

1.2 Background

Algorithms that compute the multidimensional discrete Fourier transform (MD DFT)
have been roughly categorized as row-column, multidimensional variants of Cooley-
Tukey (MD CT), and reduced transform algorithms (RTA). Parallel implementations
of the row-column and multidimensional Cooley-Tukey algorithms have been widely
studied in the literature, a short list of these includes [19,18,37,13,24,6]. The feature
of these algorithms most pertinent to this program is that they alternate stages of
computation with stages of global data exchange.

The row-column algorithm evaluates the N x N 2D DFT by computing the 1D
N —point DFT of the rows and columns of the 2D array. Parallel implementations of
this algorithm require a global transpose operation between the row and column FFT
stages. Specific implementations of this algorithm differ in the machine model and
method used to perform the transpose. For a distributed machine model, the global
transpose operation requires every processing element to exchange data with every
other processing element. Interconnection networks that can transpose an N x N array
distributed on N processors in O(N) time include: the data manipulator[10], omega[21],
Staran flip[5],generalized cube[30], and ADM[31]. The data manipulator requires log N
stages of N switches, while the others require log; NV stages of N/2 switches. These
systems are the most costly and complex elements of the multiprocessor system.

The Cooley-Tukey [9] algorithm was extended to multiple dimensions in [27,14,17].
A unified treatment of these is given in [22]. Asin the one dimensional case, the additive
properties of the indexing set are exploited to factor the MD DFT into alternating
stages of lower order MD DFT, twiddle multiplication, and data permutation. This
decomposition process can be applied recursively to produce algorithms whose dataflow
is optimized for a specific architecture [18], and that have a reduced number of multiplies
relative to the row-column method. However, all variants of the multidimensional
Cooley-Tukey algorithm require alternating stages of DF T with stages of data exchange.
Like the row-column method, extensive interprocessor communications is required.

Reduced transform algorithms (RTA) will be considered as alternative methods
of computation. These algorithms apply number theory or polynomial theory to the
computation of the multidimensional DFT. They are reductions in the sense that they
compute a d—dimensional DFT with fewer 1D DFTs than the dN4~! 1D DFTs re-
quired by the row-column method. These algorithms include the polynomial transform
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algorithm [25,26), the multidimensional AFW algorithm (3], the weighted redundancy
transform (WRT) [35,34], and the linear congruence algorithm [11]. Some RTA are
shown to possess structures that do not intersperse computation stages with commu-
nication stages. The algorithms that satisfy this constraint can be implemented on
distributed processors with no interprocessor communication. These algorithms have
neither the time nor the hardware cost associated with the data exchange stages of
row-column and multidimensional Cooley-Tukey algorithms.

The remainder of this chapter is organized as follows. First, the multidimensional
DFT is defined, and the row-column and multidimensional Cooley-Tukey algorithms
(MD CT) are reviewed. The row-column algorithm will be used in chapters 3 and 4
as a comparative measure. The MD CT algorithm will be used to develop the hybrid
algorithm of chapter 4. Reduced transform algorithms are discussed, and a parametric
line formulation of the linear congruence.algorithm is described.

MD DFT Definition
The summation form of the multidimensional discrete Fourier transform is given by

ny~-inz~1 ng—1

Y(j1,J2s---04) = 2 Z Z z(kr, k2, . - kd)“"’“kl"""'nk2 ""’iikd (1.1)

k1=0 k2=0 kq=0

0 <y, ki < n;, Wy, =€ 2:"'

Letting n; = N, the direct computation of a single output point by the summation
definition or by matrix multiplication requires N¢ complex multiplies, and N¢ complex
additions. There are N?¢ output points, so the evaluation of the entire expression by
this method requires N*N?¢ complex multiplies, and NYN? complex additions. As in
the 1D case fast algorithms exist for MD DFT. The row-column algorithm below is one
of these.

Row-Column Algorithms

The row-column algorithm evaluates the n x n 2D DFT by computing the 1D n—point
DFT of the rows and columns of the 2D array. The n xn 2D DFT summation is defined

as
ny—1na-—-1

Y(i) =Y Y z(k, kz)w"k'wf,k's (1.2)
k1 =0 k;=0

Equation (1.2) is seen to compute one dimensional n—point DFT on the rows then
columns of the input array. The row-column method is extended to any number of

dimensions by performing 1D DFT with respect to each dimension.
There are dN4~! one dimensional Fourier transforms required to evaluate the d—di-
mensional Fourier transform by the row-column method. If they are computed directly
then O(dN?t!) arithmetic operations are required. If N = 2" and they are computed
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using the FFT, then the complexity is O(dN4log N). This represents a considerable
improvement over the O(N??¢) operations required for direct evaluation of (1.2).

Multidimensional Cooley-Tukey Algorithms

The row-column method applies the Cooley-Tukey (CT) FFT algorithm to each dimen-
sion separately. For the 2D case the CT FFT is applied row-wise then column-wise.
This decimates and transforms the array in each index separately. In [14] a derivation of
an algorithm that decimates and transforms both indices simultaneously is given. This
algorithm is a multidimensional Cooley-Tukey algorithm in the sense that it exploits
the additive properties of the underlying indexing set to decompose the MD DFT into
stages of lower order DFT, stages of permutation, and stages of twiddle multiplication.
Below, the multidimensional Cooley-Tukey algorithm is shown for the 2D case and the
MD case.
The N; x N, 2D DFT is given by

Ni1-1N;-1

Y(ki,k2)= Y. > x(nl,ng)w"‘”’ k’"’ (1.3)

n|—0 nz—o

For N; and N; composite, N; = r;8; and N, = rys; let

ny =s1pyr+ U1, ng=3p2+ Uz (1.4)
0<pi<r, 0<u;<s,. )

and let
ki = a1 + by, ks =ax+rb;

0<a;<ry, 0<b<s. (15)

Substituting (1.5) and (1.4 into (1.3) gives the two-dimensional Cooley-Tukey (vector-
radix) decomposition [14]

.11-l s2~1

Y'(al + leh a; + szz) = Z Z wu:bnwuzbzwaxulw;lv:uz (16)
u) =0uz=0

r—-1ry-1

Y Y z(s1p1 + w1, 82p2 + U)W P WP
P1=0p2=0

The decomposition of (1.7) extends naturally to multidimensional transforms that
have a composite number of points in each dimension. Let

N; = s;ri, ki = a; + r;b;, and n; = s;p; + u; (1.7)

where
OSai,Pi<"ia OSbi,U-’<3ia i=1,2"°"d
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then the d—dimensional DFT given by (1.1) can be written
Y(al +T1b1,...,ad+7'dbd)= (18)

n-1 8q4—1
v u[bl R udbd ajuy . aquy
Z Z “sy Wsg WA, WNy

uy =0 ug=0
ri—1 T4—~1

. Z e Z r{s1pr + U, ..., 84pd + ug)w, Pt - widPd
=0 Pa=0
In chapter 4 this algorithm will be coupled with the hyperplane algorithm to pro-
duce a multiprocessor algorithm that is highly scalable and requires no interprocessor
communication.

1.3 Reduced Transform Algorithms

Reduced transform algorithms (RTA) take their name from the fact that they reduce
the number of one-dimensional DF'T needed to compute the MD DFT below the dN¢-!
required by the row-column method. These algorithms apply number theory or poly-
nomial theory to the computation of the MD DFT. They include the Nussbaumer-
Quandalle polynomial transform algorithm [25,26], the multidimensional algorithm [3]
of Auslander et al., the weighted redundancy transform (WRT) {35,34] of Vulis and
Tsai, and the linear congruence algorithm of Gertner [11].

In [3], Auslander et al. introduce an algorithm for the computation of the multi-
dimensional DFT. The algorithm depends on the underlying indexing set possessing
finite field properties and is therefore restricted to arrays of prime size in each dimen-
sion. The WRT algorithm {35,34] depends on ring properties of the indexing set, and
operates on any M x N array. This algorithm computes the MD DFT in terms of a
set of lines that cover the output array. The output lines are formed by summation
from a set of 1D DFT computed on lines covering the input array. If the computation
of the 1D DFT are performed in parallel, then interprocess communication must occur
to form the output lines.

The Nussbaumer-Quandalle algorithm [26,25] uses polynomial transforms to map
the multidimensional DFT into a set of independent 1D DFT, and the linear congru-
ence algorithm of [11] computes the 2D DFT by a set of independent 1D DFT along
linear congruences over the indexing set. Both algorithms operate on 2D square ar-
rays of prime, power of prime, and product of prime sizes in each dimension. Both
of these algorithms evaluate the 2D DFT by a set of independent 1D DFT computed
on data derived from the input set using only additions. Parallel algorithms like those
considered in this program may be developed using these reduction algorithms.

The remainder of this section gives a parametric line formulation of the linear con-
gruence algorithm of [11]. This formulation of the 2D DFT directly restricts com-
putation to a set of lines covering the output grid. Correspondence between the
Nussbaumer-Quandalle algorithm and the line algorithm are given in (1,28].
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The Parametric Form of the Linear Congruence Algorithm

The restriction of the 2D DFT to a set of lines covering the output grid is described
using the parametric form of the line {1]. Only the prime case of the algorithm is
presented here. This formulation is computationally identical to the linear congruence
algorithm in [11].

The P x P2D DFT will be computed by restricting it to a set of lines over the
indexing set Z/P x Z/P. In general, the line through a point a = (a,,a;) € Z/Px Z/P
is defined as the (cyclic) subgroup generated by a

L(a) = L((ay,a;)) = {ta = (a1t.ast): t =0,1,...,P -1} (1.9)
The following theorem gives a set of P point radial lines that cover Z/P x Z/P [1].
Theorem 1.3.1 The set of P + 1 lines

L{(m,1)), m=01,...,p—1
L((1,0))

cover Z/P x Z/P.

The P x P 2D DFT can be computed by restricting it to lines covering the P x P
output grid. The points on the lines L({m, 1)) and L((1,0)) are given by the preaddition
operations (derivation in chapter 2)

P-1

a™ = ¥ z(i,d — mi) (1.10)
1=0
P-1
ad? = ¥ 2(d.d) (1.11)
1=0
and the one dimensional P—point DFT
P-1
Vimt,t) = Y wla™, m=01,.,P-1 (1.12)
d=0
P-1
V(t,0) = wal!®  t=0,1,...,P-1 (1.13)

A
I}

0

Equations (1.12) and (1.13) evaluate the P x P 2D Fourier transform with P + 1 one
dimensional Fourier transforms on data derived from the input by the preadditions of
(1.10) and (1.11).

In chapter 2 this algorithm is generalized to permit the computation of multidimen-
sional discrete Fourier transform restricted to hyperplanes. The generalized algorithm
is used in the design of multiprocessor algorithms in chapters 3 and 4.
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1.4 Report Organization

This report is organized as follows: Algorithms for MD DFT computation were re-
viewed in 1.2. The hyperplane algorithm required by this program is developed in
chapter 2. A direct mapping of this algorithm to the broadcast mode multiprocessor is
given in chapter 3. The resulting multiprocessor algorithm requires no interprocessor
communication, but does not scale flexibly. A hybrid algorithm that marries MD CT
methods with hyperplane methods is given in chapter 4. Like the direct mapping algo-
rithm, the hybrid algorithm requires no interprocessor communications. It also has the
further benefit of being highly scalable. The results of this program are summarized in
the final chapter.




Chapter 2

An Algorithm for the Computation of the MD DFT on Hyperplanes

Introduction

The multiprocessor algorithms developed in this program depend on the reduced trans-
form algorithm (RTA) presented in this chapter. The algorithm computes a d—dimen-
sional DFT by a set of independent k—dimensional DFT; it is a reduction algorithm in
the sense that it has lowered the dimension of the Fourier transforms being computed.
The k—dimensional DFT are performed on data derived from the input data using only
additions, and produce k—dimensional hyperplanes of the output.

The algorithm is derived by restricting the d—dimensional DFT to a collection of
subgroups of its output indexing set. In order to describe these subgroups in a natural
manner, the notion of the discrete k—dimensional hyperplane is employed. In terms of
these hyperplanes the development of the algorithm is undertaken in two parts. The
first part defines a minimal set of k—dimensional hyperplanes that cover the d—di-
mensional array. The second part restricts the d—dimensional DFT to each of the
k—dimensional hyperplanes of the covering set. The restrictions are shown to evaluate
as independent k—dimensional DFT.

The algorithm is computationally similar to the reduced transform algorithms of
Auslander etal. [3], Nussbaumer and Quandalle [26,25], and Gertner and Tolimieri
[11,12]. Like those algorithms it computes the multidimensional DFT by a preaddition
stage followed by a stage of independent DFT. The approach presented here computes
the MD DFT on k—dimensional hyperplanes of the output array. It is a generalization
and extension of the linear congruence algorithm of [11,12]. A correspondence between
the line and polynomial algorithms is given in {1,28].

The motivation for developing this algorithm is the generation of a parallel algorithm
for MD DFT computation that permits flexible scaling to the degree of parallelism
of the target architecture. In later work a broadcast mode multiprocessor algorithm
based on the algorithm presented here will be demonstrated. The main features of
that algorithm are that it (1) requires no interprocessor communication, and (2) that
it scales to match the degree of parallelism of the target processor.

The remainder of the presentation is organized as follows: first the definitions per-
tinent to the generation of k—dimensional hyperplanes are stated, then a minimal set



of covering k—dimensional hyperplanes is derived for the cases: where the array is of
equal and prime size in at least d — k + 1 dimensions, and where the array is of equal
and power of prime (including 2) size in at least d — k + 1 dimensions. For each case the
restriction of the d—dimensional DFT to the covering set of k—dimensional hyperplanes
is given. Both cases are shown to reduce the computation to a set of independent DFT
performed on data derived from the input data using only additions. An appendix is
provided that enumerates 3D and 4D cases of the algorithm.

2.1 Definitions

This section presents definitions pertinent to the derivation of the algorithm. The algo-
rithm restricts the computation of the d—dimensional DFT to a collection of subgroups
of the output array. These subgroups are defined on the underlying indexing set of the
d—dimensional DFT.

The index set of the Ny x --- x Ny d—dimensional DFT is associated with the ring

C=2Z/Nyx--x Z/Ny,

where Z/N; is the ring of integers modulo N;. This set defines the region of support of
the function. A point in the index set is taken to be the vector u € C defined by the
d—tuple

g:(ul,...,ud), u,-EZ/N;.
The value of the DFT restricted to a point u in the output array is evaluated in the
natural way as

Nl—l Nd"-l
V(ut,...,ua) = Y -+ Y z(ag,...,¢a)wif - Wit

a,=0 ag=0

for a fixed u € C.
The discrete line through a point in a two-dimensional array a = (a;,a;) € Z/N x
Z/N is defined as the (cyclic) subgroup additively generated by a

L(a) = {sa = (sa;,sa;):s € Z/N}. (2.1)

The line is said to be of full order if [L(a)] = N.

This definition of a line extends naturally from the case where the line lies in a
two-dimensional grid to the case where the line lies in a d—dimensional array. The line
through a point a € (Z/N)? is defined by the subgroup [12]

L(a) = {sa = (sa1,...,sa4): s € Z/N}. (2.2)

By definition the line L(a) is additively generated by a; L((a)) contains all linear
combinations of the point a € (Z/N)?. L(a) defines the additive closure of a € (Z/N)".
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In a manner similar to the way L(a) defines the closure of a point a € (Z/N)¢,
we may define the closure of a set of points a;,...,a; € (Z/N)? The closure of
ay,...,a; € (Z/N)*is given by the subgroup

H(ay,...,ax) = {s1a; +--- +ska,: i € Z/N}. (2.3)

H(ay,...,ax) contains all linear combinations of the points in the set {ay,...,a;}.

The idea of dimension can be associated with the subgroups generated in this way.
The dimension of a subgroup of (Z/N)? is taken to be the number of linearly inde-
pendent points a; € (Z/N)? required to generate it by the definition of (2.3). In this
manner, subgroups generated by the additive closure of 1, 2, and 3 linearly independent
points will be called lines, planes, and cubes respectively. Similarly, a subgroup whose
dimension is d — 1 is called a hyperplane. If the dimension of a subgroup is k < d it is
called a k—dimensional hyperplane.

The requirement of (2.3) that the array be of equal size in each dimension is overly
restrictive for the development of the algorithm. It will be seen that it is only necessary
for the array to be of equal size in d — k + 1 dimensions.

Consider a d—dimensional array whose region of support is given by C = Z/N; x
.-+ X Z/Ny. Assume that d — k + 1 dimensions are of equal size, and for simplicity
of presentation allow those dimensions to be contiguous. Write Ny = --- = N4. The
definition adopted for the presentation of the algorithm uses the subgroup Hy(a) formed
by the closure of the vector a € R with the k — 1 standard basis vectors

. 1, ifi=j :
8(7) ={ 0 horwise 0 i=Leeok-l. (2.4)
The subgroup
Hi(a) = {8181 + - + se-181 + skas : 8¢ € Z/Ni} (2.5)

will define the k—dimensional discrete hyperplane. For the purpose of the development
of the algorithm we will only be concerned with k—dimensional hyperplanes of full
order. That is (N --- Ni) points. As an example, consider the 4D array (Z/N)*. The
hyperplane generated by the point a = (0,0, 1,1) is given by

H,((0,0,1,1)) = {(s1,32,53,83) : 8 € Z/N},

and H3((0,0,1,1)) contains N3 points. Similarly, the hyperplane generated by the
point a = (0,0, z,y) is given by

H3((0,0,z,y)) = {(s1,82,53%,33y) : 8; € Z/N}.

A set of k—dimensional hyperplanes is said to cover the d—dimensional array C,
if every point in C is in at least one k—dimensional hyperplane of the set. A set of
covering k—dimensional hyperplanes is minimal if there is no smaller set of k—dimen-
sional hyperplanes that also covers C.
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2.2 Prime Case

This section derives the prime case of the algorithm. For this case the d—dimensional
DFT is defined over the region C = Z/N; x - -+ X Z/N4 where C is of equal and prime
size in d — k + 1 dimensions. That is,

C=Z/Nyx---xZ|/Nyg=AxB,

A=Z/Nyx--- X Z[Ne_y X Z/P, (2.6)

B =(Z/P)**, and P is a prime.
The algorithm is derived in two parts. The first part is the specification of a minimal
set of k—dimensional hyperplanes that cover C. This follows immediately below. The
second part of the derivation requires the d—dimensional DFT to be restricted to each
of the k—dimensional hyperplanes of the covering set. The resulting algorithm is shown
to be computed by a set of independent k—dimensional DFT. This case of the algorithm
is specified by the procedure of equations (2.20) and (2.21).

Covering Hyperplanes

The following theorem gives a minimal set of |.A| point k—dimensional hyperplanes that
cover R. Let 8(j) denote the vector of j zeros, ie. §(3) = (0,0,0). The k—dimensional
hyperplanes are defined by equation (2.5).

Theorem 2.2.1 The set of k—dimensional hyperplanes
HO = Hk((Q(k_,),l,ml,...,md_k)) m; € Z/P
H = Hk((Q(k-x),O,l,mz,---,md-k))
Har = Hi((8x-1,0,0,...,0,1))

covers the d—dimensional array C = A x B, where A = Z/Ny x -+- X Z/Nyx-1 X Z/P,
B =(Z/P)**, and P is a prime. There are

Pd-k+l -1
P-1
k—dimensional hyperplanes in the set.
Proof. Every a = (a1,...,a4) € C can be written
a=gay+- - +ap-n +a,

where g(;) is the vector whose i** component is a; and is zero elsewhere, and a’ is the
vector @' = (8(k-1),ax,- .., ad)-

By definition of Hi(a), a(;) is in every hyperplane of the covering set for: = 1,...,k—
1. Since the hyperplanes are closed under addition, covering is shown if every a’ is in
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at least one hyperplane of the covering set. If a; # 0 then a; is invertible modulo P
and a’ may be rewritten

! -1 -1
a =ak(Q(k—l),1aak Qigly--0 Qg ad)v

and a' is seen to be contained in the union of the hyperplanes of the set H, of the
theorem. By closure, the point @ = a! + -+ + a*~! + @’ must also be contained in the
union of the hyperplanes of the set H,. There are P¢~* k—dimensional hyperplanes in
Ho.

Repetition of this step until all the remaining d — k components of @’ are exhausted
completes the proof. The a® set of hyperplanes generated contains P4~*~* k—dimen-
sional hyperplanes. In all there are

Pd—k+1 -1
P-1
k—dimensional hyperplanes in the covering set.
a

The k—dimensional hyperplanes of the covering set of theorem 2.2.1 contain redun-
dant points. The number of points in C is

IC] = Ny--- Ny_y - P51,
The number of points in each k—dimensional hyperplane is
|Al = Ny---Neoy - P
and the number of redundant points is |
d-k _
4 (55).

The locations of the redundant points are given by the (k — 1) dimensional hyperplane

H(8y,...,8i-1) = {(31y---+8k-1,8(d— k + 1)) : 3, € Z/N;} (2.7)

where H(§,,...,8;_,) is defined by equation (2.3). The elements of (2.7) are common
to every hyperplane of theorem 2.2.1, and are redundant

pi-k -1
» (7)

times, accounting for all redundant points.
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DFT Restriction

The d—dimensional DFT can be computed by restricting it to the k—dimensional hy-
perplanes of theorem 2.2.1. Below, the restriction of the MD DFT to those hyperplanes
is derived.

The d~dimensional DFT over C = Z/N; x --- Z/Ny is given by

Viw) = ) z(a)wi™ - wii, u € C. (2.8)
a€C

The prime case of the algorithm requires d — k + 1 dimensions to be of equal and prime
size. For simplicity of presentation assume these are contiguous and write

C=AxB,
A=Z/N1 X e X Z/Nk-l XP,
B = (Z/P)**, and P is a prime.

The P%-* k—dimensional hyperplanes of H, given by theorem 2.2.1 can be defined by
the homomorphism
$p: A— C. (2.9)

For all s € A, ® is given by
(I>o(§) = (SI, ooy Sk—19SkySKEMy,y ..., skmd_k). (2.10)

The restriction of the d—dimensional DFT (2.8) to the k—dimensional hyperplanes of
H, is evaluated by replacing u with ®o(s) of (2.10) to obtain

V(®a(s) = X z(@)wp? - - wy, 7+, (2.11)
a€C
s € A
The inner product
Bo(s)-a=s1a1 + - + sk—18k-1 + s(ax + akp1my + -+ + agma—i) (2.12)
can be written
Bo(s)-a=s1di+- - +udi=3-d (2.13)
de A
where
dj:dj, j=1,...,k—1
i,-_kzaj, j=k+1,...,d (214)

de = ax + Mm@y + - + My-kaq .
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Substituting (2.13) in (2.11) allows the d—dimensional DFT restricted to the k—di-
mensional hyperplanes of Ho, to be written

V(@o(s)) = Y Zx(d(k—l)a dy —m -1, .i.)wl’\},d‘ "'wfx}‘:", (2.15)
deAieB
de A
Where
ai = dk -—m- i, (216)
and
d(k—c) = (dla cety dk—c)- (2.17)

Equation (2.15) can be rewritten as a reduction stage, followed by a DFT stage. The
reduction operation is given by

a;‘o = Z I (d(k—l)’ dk —m:- L l) ) d €A (218)
i€B

and the DFT stage is given by

V(®o(s)) = 3 a?;owjvl;*l e w (2.19)
deA
s€eA meB.

Equations (2:18) and (2.19) give the values of the d—dimensional DFT on the k—di-
mensional hyperplanes of the set Hy. There is one such hyperplane for every m € B.
In a similar manner, the restriction of the d—dimensional DFT to each of the re-
maining k—dimensional hyperplanes of the covering set of theorem 2.2.1 is computed
by a reduction operation af*, followed by a k—dimensional DFT of those points.
The complete algorithm is stated below for the case where the d—dimensional DFT
over C is of prime size in at least d — k + 1 dimensions. Then C is given by

C=AxB,
A=N1X"'XNk_1 XP,
B = (Z/P)**, and P is a prime.

Step 1 Reduction stage. This stage requires the evaluation of the summations

d=k
ay® = X%r(d(k_,), di — lZm;i,, i), (2.20)
1€ =1
u d—k
ag’ = 3 z(dw-ry gy dk— D Uil Git1,- -, idok),
i€B I=5+1
Ma- .
ag ™t = r(dk-1)s &, di),

€8
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de A, m;€ Z/N;
Step 2 DFT stage. This stage requires the evaluation of the k~dimensional DFT

V(®o(s)) = 3 afewi® .- wi, (2.21)
deA

H
V((D,(g)) = z aijw),\}xdl .. .w},\,;kdk’

deA

V(@uk(s)) = 3 a4 wid .- wiph

- - i Nl Nk Y
deA
s€ A
In general @, is given by
@](é) = (311 ey Sk—lvﬂ(j), Sky Sk 41, .- 7Skmd—k),
m; € Z/N,

The d—dimensional DFT over C = A x B is seen to be computed by

Pd-k+1 -1
P-1

independent k—dimensional DFT over A. The k—dimensional DFT are evaluated on
data derived from the input data using only additions.

2.3 Power of Prime Case

This section derives the power of prime case of the algorithm. Like the prime case,
the power of prime case is developed in two parts. The first part is the specification of
a minimal set of covering k—dimensional hyperplanes. The second part is the restric-
tion of the d—dimensional DFT to each of the hyperplanes of the covering set. The
derivation of the algorithm follows below. The algorithm is stated by the procedure of

equations (2.34) and (2.35).

Covering Hyperplanes
Consider the d—dimensional DFT defined over

C=Z/Nyx---x Z[Nq4
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where C is of equal and power of prime size in at least d — k& + 1 dimensions. For ease
of presentation these dimensions are taken to be contiguous. That is,

C=AxB,
A=Z/Nyx - x Z/Neey x Z/P™, (2.22)
B = (Z/P")**, and P is any prime including 2.

The following theorem gives a minimal set of |A| point k—dimensional hyperplanes that
cover C. Let @,y denote the vector of j zeros, ie. i3y = (0,0,0). The k—dimensional
hyperplanes are defined by equation (2.5).

Theorem 2.3.1 The set of k—dimensional hyperplanes

Ho = Hk((Q(k-—l)alvml,'--vmd—k))7 m; € Z/P"
H] = Hk((Q(k—])7 T‘1P, 13m2a- .. ,md_k)), r; € Z/P"—l

Hix = Hi((8(k-1), Pr1, Pra,..., Pro_y, 1))

covers the d—dimensional array C = A X B, where A= Z/Ny x --- x Z[Ni_1 x Z/P",
B = (Z/P™)**%, and P is any prime including 2. There are

P d-k Ppd-k+1 _ 1
(7’—) ' ( P-1 )
k—dimensional hyperplanes in the set.

Proof. Similar to theorem 2.2.1.
(]

The covering set of theorem 2.3.1 contains redundant points. Altogether there are

P d—-k Pk 1
4] (_P_) ( P-1 )
such points. The following theorems fully describe the redundancy between any two

hyperplanes of the covering set of theorem 2.3.1. Throughout the sequel, the notation
T mody 15 taken to be

£mody = (z‘mody’ M ’z"mody)
where z is the vector z = (z,...,z,) and y is a scalar.

Theorem 2.3.2 The redundancy between any two k—dimensional hyperplanes of the
set Hy of theorem 2.5.1 i3 given by

Hi((8(k-1y- 1,m)) N He((8x-1), 1, 1)) =
Hk((Q(k—l)’Pn-a?(mmodl’“)Pn—a))? m‘?ji € Z/Pn

Where o is the mazimum such that
m; = j; mod P?

holds for alli = 1,...,d — k. The intersection contains (Ny --- Nx_1)P?® points.
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Theorem 2.3.3 The redundancy between any two k—dimensional hyperplanes of the
set H;, l=1,...,d—k -1, of theorem 2.5.1 is given by

Hi((8i-1y,1, 1, m)) 0 Hi((8k=1), 4> 1, §)) =
Hk((Q(k—l)»Pn-a+l(£modP°), Pn—a’ Pn_a(mmodP")))

where

riquEZ/Pn_l, i=1,...,l
mi,, € Z/P* 1=1+1,...,d-k

and o 18 the mazimum such that
r; = q; mod P°

and

my Ej,.modP"

hold for allt =1,...,land h = [+1,...,d—k. The intersection contains (N, --- Ni_,)P*
points.

Theorem 2.3.4 The redundancy between any two k—dimensional hyperplanes of the
set Hy_ of theorem 2.3.1 1s given by

Hi((8k-1)» Pr, 1)) N Hi((8(k-1), Pg, 1)) =
Hk((Q(k-l)s P"_a(.tmoch')s Pn-a—lapn-a(m_modl’“)))

where

ri g € Z/P™!

and « s the mazimum such that
ri = ¢; mod P*

holds for alli =1,...,d - k. The intersection contains (Ny--- Ni_ )P points.

Theorem 2.3.5 The redundancy between any two k—dimensional hyperplanes of the
sets H, end H,, where T # y is given by

Hi((Qk-1y, 5 1, m)) N Hi((Bik-r)y @ 10 §)) = Hi(81s - . -, 8kt Q(amis))-

The intersection contains (N, --- Ni_y) points.
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DFT Restriction

In a manner similar to the prime case described in the previous section, the d—dimen-
sional DFT can be computed by restricting it to the covering set of k—dimensional
hyperplanes given by theorem 2.3.1. This restriction is detailed below.

The power of prime case of the algorithmm requires d — & + 1 dimensions to be of
equal and power of prime size (including 2). For simplicity of presentation these are
assumed to be contiguous, and we write

C=AxB,
A= Z/N1 X e X Z/Nk_l X Z/Pn,
B = (Z/P")**, and P is any prime (including 2).

The restriction of the DFT to the (P")?-* k—dimensional hyperplanes of the set Mg
is identical to that of the prime case derived in the previous section. To illustrate the
derivation of the other terms, the set H; of theorem 2.3.1 is considered below.

The (1/P)(P")?-* k—dimensional hyperplanes of H, of theorem 2.3.1 can be defined

by the homomorphism

Forall s € A, Q is given by
Q](§_) = (S], ey Sk=1, skPrl, Sky Sk, ..., Skmd_k). (2.24)

The restriction of the d—dimensional DFT to the k—dimensional hyperplanes of H; is
evaluated by replacing u with ©,(s) of (2.24) to obtain

V(Q(s) = Y zla)wi® - w2, (2.25)
a€C
s € A
The inner product
Q](g) ‘a = s+ + Sk-1qk-1 (226)

+3k(akT1 P + aky1 + aryama + - + agma—)

gives
M(s) - a=sdi+ --+skde=5s-d (2.27)
de A
where
d; = aj, j=1,... k-1
“ = G (2.28)

ij_kzaj, Jj=k+2,...,d
dr = axm P + agyy + agpama + - + my_iay .
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Equation (2.25) may then be written
Vu(s) = S wihwik (2.29)

deAi€eB

‘r(d(k-—l)’ il’ dk - Prlil - z mlila i27 s 7id—k)a

de A.
Where
d—k
akpr = dp — i P = Y myay, (2.30)
=2
and
dik-e) = (dy,. .-, dk—c). (2.31)

Equation (2.29) can be rewritten as a reduction stage, followed by a DFT stage. The
reduction operation is given by

d—k
Hl = Z T (d(k—l)7 ll, dk - 217'1P z ymy, lg, id-k) y d € A (232)
1€B =2

and the DFT stage is given by

V(u(s) = 3 afiwid - with, (2.33)
deA
se A, meB.

Equations (2.32) and (2.33) give the values of the d—dimensional DFT on the k—di-
mensional hyperplanes of the set H;.

In a similar manner, the restriction of the d—dimensional DFT to each of the re-
maining k—dimensional hyperplanes of the covering set of theorem 2.3.1 is computed
by a reduction operation a4 Ma followed by a k—dimensional DFT of those points.

The complete algorithm is stated below for the case where the region of support,
C, is of power of prime size in at least d — k + 1 dimensions. Let C be given by

C=AxB8,
A=Nl X v XNk_.] XPn,
B = (Z/P")**, and P is a prime (including 2).

For this case, the algorithm is specified by the following procedure:

Step 1 Reduction stage. This stage requires the evaluation of the summations

af' = Y ¢ (d(k 1y dk — Z my, i) . (2.34)

i€B
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=541

d—k
H
a,’ = T (d(k—n), ) dk"zllrlp > mil, tg,.. .t d-k) )

d—k
a:‘d"‘ = I (d(k_x). i, di — Z 2'IT‘IP>

=1
de A, m; € Z/N;
Step 2 DFT stage. This stage requires the evaluation of the k—dimensional DFT
V(Q(s)) = Y ag®wi - wi®, (2.35)

deA

, H d d
‘/(QJ(Q)) = za )w}’vlll ) w;vkkkY
deA

V(Quk(e)) = 3 ag twf - wph,
deA
s € A

The d—dimensional DFT over C = A x B is seen to be computed by

Pn Pd—k«H -1
(?) P-1

independent k—dimensional DFT over A. The k—dimensional DFT are evaluated on
data derived from the input data using only additions.
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2.4 Appendix

This section enumerates the 3D and 4D cases of the algorithm.

¢ 3D — 2D, Prime Case.

N x P x P 3D DFT computed by .V x P 2D DFT,

where P is prime and N is any number.

1. Covering planes

Ho = Hy((0.1,m)), m=0,1,...,P -1
H, = Hy((0,0.1))
2. Reduction stage
P-1
an?-“ﬂ Z I(dl’ d2 - im’ l)’ m = 0, 1’ ,-P -1
=0
P-1
aﬁ‘hdﬂ r(dy, t, dy)
=0
&G =0,1,...,N =1
d,=0,1,...,P-1
3. N x P 2D DFT stage
N-1 P-1
V(S], S92, s;m) = a(}z‘:‘dz)wg}"w?}’?
d1=0d2=0
N-1pP-1
V(51.0,s) = a:;‘hdz)wf{,‘"wﬁ,”’
d,=0d,;=0
81=0,1, .,‘V~l _
$2=0,1,...,P~1 m=01...,P-1

The computation of the NV x P x P 3D DFT by this method requires P + 1 reduction
operations and a like number of .V x P 2D DFT. Note that [33] is a source of O( P log P)

prime size FFT algorithms.

To compute a 3D DFT by the line approach each dimension would have to be of
equal size. The corresponding case isa P x P x P 3D DFT computed as P2 + P + 1

reduction operations and a like number of P point 1D DFT.




e 3D — 2D , Power of Prime Case.
N x P* x P* 3D DFT computed by N x P* 2D DFT,

where P is prime (including 2) and N is any number.

1. Covering planes

Ho = Hy((0,1,m)), m=0,1,...,P" 1
H, = Hy((0,rP, 1)), r=0,1,...,P* ! -1

2. Reduction stage

Pm -1
aﬁol»d2) = ;I(dl,dg—iyn, l)'l m=0,1,...,Pn—-1
Proi
am,d,) = Zo r(dy, i, dy — rPi), r=0,1,..., P -1
d=01,...,N-1
d=0,1,...,P* -1
3. N x P* 2D DFT stage
N-1P"~1
V(Sh S7, Sgnl) = Z Z a(dl dz) dl’lwi‘)z:z
dy=0 d=0
N-1P"-1
V(S], Y'PSQ, 32) = Z Z a’(d1 dg)w?\l"lw;’n
d;=0 dy=0
81=0,1,...,1‘V—1 m:O’l,”.,Pn_l,
32=0,1,...,P"—1 r‘—’O,l,...,P"'"‘—l,

The computation of the N x P* x P" 3D DFT by this method requires P* + P™"!
reduction operations and a like number of 2D N x P DFT.

To compute a 3D DFT by the line approach each dimension would have to be of
equal size. The corresponding case is a P x P* x P* DFT computed by (P")%(1 +
1/P + 1/ P?) reduction operations and a like number of P" point 1D DFT.




e 4D — 3D , Prime Case.
Ny x N3 x P x P 4D DFT computed by N, x N; x P 3D DFT.

where P is prime and N, N, are any numbers.

1. Covering cubes

Ho = Hs((0,0,1,m)), m=0,1,...,P —1
H, = H,((0,0,0,1)).

2. Reduction stage

P-1
az:,d,,ds) = 2 r(dy, da, d3 — im, 1), m=0,1,...,P -1
\ P-1 '
a(dll,dz.ds) = rd I(dlw dy, 1, ds)
d1=0,1,-..,N1‘_1
d2=0,1, ..,N2—1
d3=0,1,...,P -1

3. N x N x P 3D DFT stage

Ny~1 Ny—1 P-1

— H dysy, d2sy . das
V(si, 82,83, 85m) = 30 30 3 00 40N, W WE ™
d1=0 dz=0 113:0

Ni~1 Np-1 P-1 .
_ Hy dysy ,dzsz, d3sy
Vs, 82,0, 83) = Z Z Z A4y dy )N, WNy WP

d1=0 d2=0 d3=0

51 =0,1,...,Ny - 1,
s2=0,1,...,N; -1, m=0,1,...,P-1
S3=0,1,...

,P—-1

The computation of the Ny x N2 x P x P 4D DFT by this method requires P + 1
reduction operations and a like number of 3D N; x N, x P DFT. Note that [33] is a

source of O(P log P) prime size FFT algorithms.

To compute a 4D DFT by the line approach each dimension would have to be of
equal size. The corresponding caseisa P x P x Px P DFT computed as P2+ P?+ P+1

reduction operations and a like number of P point 1D DFT.




e 4D — 3D , Power of Prime Case.
N; x Ny x P* x P* 4D DFT computed by N x N, x P 3D DFT,
where P is any prime (including 2) and N;, N; are any numbers.

1. Covering cubes

Ho:Hg((0,0,l,m)), m=0,1,--.,P"—1
H] = Hg((0,0J‘P,l)), r = 0,1’_. . ,Pn—l ~1.

2. Reduction stage

Pr—1
e gy = 3 aldydydy—im,i),  m=01...,P"~1
1=0
\ Pt -1
A gy = 2 a(didyiydy—rPi),  r=01,... P71
1=0
d]=0,1, .,Nl—-l
d2=0,1, .,Ng—].
d;=0,1,...,P" -1

3. N1 x N3 x P" 3D DFT stage

Ni~1 N;-1Pn-1 n 4
N — sy dsp d
V(si, 82,83, 5am) = 3. 3 D O@ qpaq) N Wy WER
d]’-:O d2=0 d3=0
Ni—-1 Np-1P"-1

— H dysy .dasy, .das
V(sl’ $2, rPss, 33) - Z Z Z a(dln .dz.ds)lel 1wN222wP3”3
d]"-:O dz:O d3=0

s1=0,1,....M —1, m=0,1,...,P" -1
32=0111“"N2_1’ r=20,1 Pn_l—'l
s3=0,1,...,P" -1

The computation of the Ny x Nz x P* x P" 4D DFT by this method requires P"+ P™!
reduction operations and a like number of 3D NV; x N, x P* DFT.

To compute a 4D DFT by the line approach each dimension would have to be
of equal size. The corresponding case is a P" X P" x P* x P* DFT computed as

(P*)3(1 + 1/P + 1/P? + 1/ P?) reduction operations and a like number of P point 1D
DFT.
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e 4D — 2D, Prime Case.
N x P x P x P 4D DFT computed by N x P 2D DFT,
where P is prime and N is any number.

1. Covering planes

Ho = Hg((O,l,ml,mz)), my,my =0,1,...,P -1
H, = H3((0,0,1,m2))
H, = H((0,0,0,1))

2. Reduction stage

P-1P-1
H . A
a(d(:,dz) = Z Z x(dy, dy — miiy ~ maty, 1y, t2), my,m;=0,1,...,P -1
i1=0i2=0
P-1 P-1
H . . L.
Uy = 2 2 oldr, ir, dy = maiy, 1y)
11=01i,=0
P-1P-1
H _ ..
a(d211d2) - Z Z z(dy, 4, 12, da)
131=01=0
dl = 0, 1, . ’N -1
d=01,...,P-1
3. 2D N x P DFT stage
N-1 P-1
Vs, on s, sam) = 5 3 ff oo
dy=0d;=0
N-1P-1
Viow 0 snysama) = 3 5 affs gyt
dy=0d,=0
N-1P-1
V(S], 0, 0, 82) = E Z azg,d,)wf\}“w#n
dy=0d2=0
81 =0,1,...,N—1,
my,m=0,1,...,P -1
s =0,1,..., P 1, M2 s 1y ,

The computation of the N x P x P x P 4D DFT by this method requires P2 + P +1
reduction operations and a like number of 2D N x P DFT. Note that [33] is a source
of O(P log P) prime size FFT algorithms.

To compute a 4D DFT by the line approach each dimension would have to be of
equal size. The corresponding caseisa Px Px Px P DFT computed by P3+ P24+ P +1
reduction operations and a like number of P point 1D DFT.
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e 4D — 2D , Power of Prime Case.
N x P* x P* x P MD DFT computed by N x P* 2D DFT,
where P is any prime (including 2) and NV is any number.

1. Covering planes

'H0=H2((0,1,m1,m2)), m,-=0,1,...,P"—1
H1=H2((0,7‘1P,1,m2)) T,‘=0,1,...,Pn_1—1
H, = Hy((0,r P, P, 1))

2. Reduction stage

Pr—1 Pr-1
H , . .
aR gy = 2 2 x(dr, dy—miii —maiy, iy, 32),  my,mp=0,1,...,P"—1
l'|=0 32:0
" Pr—1 Pr-1
. . . _ 1
Qg ) = Z E z(dy, 11, dy — 11 Pty — maig, 12), r,m2=0,1,...,P"" —
11=0 =0
Pn—1Pn-1
H . . . .
afay = 2 2 *(di, iy, iz, d2 ~ 1 Piy = 12 Pia)
11=0 =0
d=01,...,N-1
d,=0,1,...,P" -1
3. 2D N x P" DFT stage
N-1Pm-1 ,
H d
V(s1, s2, samy, sama) = Z Z a(d‘:'a,z)w,\}"w,;?,;’2
dy =0 d=0
N-1Pr-1
H d d
V(s1, r1Psz, 82, s2m2) = Z Z a(d‘hd:)w,\}"wp’,;"
dl=0 dz:O
N-1 Pr-1
H d d
V(sl, r1Psy, r2Ps,, sz) = E z a(d:,dz)le“sz:z
dy =0 da=0
381 =0,1,...,N - 1,
S2 =0,1,...,P"

The computation of the N x P* x P" x P* 4D DFT by this method requires (P™)?(1 +
1/P + 1/ P?) reduction operations and a like number of 2D N x P® DFT.

To compute a 4D DFT by the line approach each dimension would have to be
of equal size. The corresponding case is a P* x P* x P* x P* DFT computed by
(P")3(1/P? + 1/P + 1) reduction operations and a like number of P* point 1D DFT.
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Chapter 3

An Algorithm for the Multiprocessor Computation of MD DFT

3.1 Introduction

This chapter describes a new algorithm for the parallel computation of the multidi-
mensional discrete Fourier transform. The features of the algorithm are that it (1)
eliminates the need for interprocessor communication and (2) that it maps to machines
with any number of processors. The cost of eliminating the interprocessor commu-
nication typical for such algorithms is that one addition must be performed at each
processing element for each word broadcast to the machine. The algorithm depends on
a machine model that supports the communication functions broadcast and report.

The methodology proposed in this chapter is based on the k—dimensional hyper-
plane algorithm previously reviewed. The central feature of that algorithm with respect
to parallel processing is that it does not intersperse communication stages with pro-
cessing stages. Two basic applications of the hyperplane algorithm are considered.

The first is a direct mapping of the hyperplane algorithm to the multiprocessor. It
is shown that such a mapping can be made when the number of processors is equal to
the number of k—dimensional hyperplanes required to cover the d—dimensional array
(k < d). For this case the d—dimensional DFT is required to be of equal and prime,
or power of prime, size in d — k + 1 (or more) dimensions. The degree of parallelism
of the algorithm is the number of k—dimensional hyperplanes in a covering set. The
granularity of the algorithm is a single k—dimensional DFT.

The major benefit of the direct mapping of the hyperplane algorithm is that it
eliminates the requirement for interprocessor communication for efficient MD DFT
computation. The major limitation of this method are the restrictions it imposes on
the machine size. There are only d — 1 possible mappings of the algorithm, and the
degree of parallelism changes exponentially between mappings.

This limitation is addressed by an alternative mapping of the hyperplane algorithm.
The variant developed is for those cases where the degree of parallelism of the machine
is not matched by the number of k—dimensional hyperplanes required to cover the
d—dimensional array. For these cases, the multidimensional Cooley-Tukey (MD CT)
algorithm is employed together with the hyperplane algorithm. The role of the MD CT
algorithm is to factor the d—dimensional DFT into stages of lower order d—dimensional
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DFT. The hybrid algorithm that results has a degree of parallelism equal to the number
of k—dimensional hyperplanes required to cover one of the resulting lower order arrays.
This hybrid method allows great flexibility in matching the degree of parallelism of the
algorithm to the size of the target processor.

The remainder of this chapter is organized as follows: First, a machine model 15
presented for a generic broadcast mode multiprocessor. Then the direct mapping of the
hyperplane algorithm to the multiprocessor machine model is stated. Detailed cases of
the algorithm are presented for the 2D prime, 2D power of prime (including 2), and
3D prime cases. The hybrid algorithm is introduced in chapter 4.

Machine Model

The algorithm is defined with respect to a broadcast mode multiprocessor machine
model. The machine is taken to be a collection of processing elements (PEs) together
with an interconnection network for interprocessor communication. The machine is
externally connected to a host by a single I/O channel. All data enters the machine
through the I/O channel. The communication functions that are supported must in-
clude broadcast and report.

1. Broadcast: This function downloads data from the I/O channel to all processing
elements.

o

Report: This function allows a distinguished PE to upload data to the I/O chan-
nel.

Comparative Measures

Throughout, a broadcast mode multiprocessor mapping of the row-column algorithm
is used for comparative purposes. That algorithm is shown in figure 3.1.

By the algorithm of figure 3.1, a 2D DFT task is seen to require alternating stages
of communication and computation. The communication stages include the download
of input data, the upload of transformed data, and the exchange of intermediate results
between processors. The computation stages are both 1D N—point DFT.

3.2 Algorithm Definition

The mapping of the k—dimensional hyperplane algorithm of chapter 2 to the broadcast
mode multiprocessor described above is given in this section. The hyperplane algorithm
is computed by a reduction stage followed by a stage of k—dimensional DFT. The prime
case of the algorithm requires

Pd—k+1 -1
M==—p7
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1. Broadcast the N rows of z uniformly among the PEs; each PE is assigned its own
set of rows.

. In parallel, compute the N independent 1D FFT(N) associated with the rows.
. Globally transpose the intermediate results in the machine.

. In parallel, compute the N independent 1D FFT(N) associated with the columns.

< B N R

Upload results. The transformed data is stored column-wise in the machine. A
transpose must be achieved at some point of the upload process if data is to be
revurned in row major form.

Figure 3.1: A multiprocessor implementation of the row-column algorithm.

reduction operations a;f" given by expression (2.20) of section 2.2. The power of prime
case has more redundancy, and requires

P d—k Pd-k+1 _ 1
M‘(?) ( P-1 )

reduction operations a}* given by expression (2.34) of section 2.3. Throughout the
sequel, let M denote the number of reduction operations of the algorithm (ie. number
of covering k—dimensional hyperplanes). For both cases the k—dimensional DFT are
computed on data derived from the input using only additions. They produce data on
hyperplanes H; of the output array. These hyperplanes are defined by theorems 2.2.1
and 2.3.1 for prime and power of prime cases respectively. Conditions for implementing
the hyperplane algorithm on a multiprocessor with no interprocessor communication

are given by the following theorem and proof.

Theorem 3.2.1 The optimal degree of parallelism for minimizing interprocessor com-
munication is the number M of k—dimensional hyperplanes required to cover the output
array.

Proof. A k-dimensional discrete Fourier transform is performed on the k—dimensional
array produced by each reduction operation. Hence, no interprocessor communication
is required from input to output if the granularity of the reductions aZ' is no finer than

that to put alld € Z/N; x --- x Z/ N, points of an a;* in a single processor. Any finer

30




degree would necessitate interprocessor communication between the stage in which the
summations of the reduction are computed and the stage where the k—dimensional
discrete Fourier transforms are computed.
a

Consider also that the reduction stage has no data interdependencies and can be
computed simultaneously with the data download. Exploiting this concurrency places
a lower limit on the partitioning of the computation. Parallel machines externally
connected to an I/O channel have completion times bound by the N? word download
and N? word upload. Regardless of the speed of addition, or the number of PEs, the
download time of N? words limits the reduction stage completion time. Assuming
granularity no finer than a complete reduction operation, an L PE machine reaches the
limit if add time is [M/L] faster than communication time.

All cases of the multiprocessor hyperplane algorithm are defined by the same basic
structure. That structure is outlined in figure 3.2 below.

1. Assign the reduction operations ag uniformly among the processing elements

(PE).

2. During the download (broadcast) ot the input data to the machine, each PE forms
the a}* terms assigned to it. For every al’i term assigned to a PE only 1 addition
is performed for each word broadcast to the PE. When the input download is
complete, the reduction stage of the computation is also complete.

3. Each PE performs a single k—dimensional DFT to finish the computation.

4. Upload results and remove redundant data.

Figure 3.2: Structure of the multiprocessor hyperplane algorithm

Using the hyperplane algorithm, a MD DFT task requires stages of communication
and stages of computation. The communication stages include only the data download
and data upload operations. The computation stages are the DFT and data reduction
operations. The communication and computation stages are the same as the serial and
parallel segments of the algorithm. That is, the serial portions of the algorithm are
the data download and the data upload, and the parallel segments of the algorithm are
the DFT and reduction operations. Unlike the computation of the DFT, the reduction
operations contain no data interdependencies, and can be computed in parallel with
the download operation. On a machine with M processors, the computational speedup
of the algorithm relative to a single processor computing the row-column algorithm is

Speedup = % (N)*F.
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This assumes the additions of the reduction stage are computed simultaneously with
the data download and incur no time penalty of their own. In the remainder of this
section the algorithm is stated in some detail for the 2D prime, 2D power of prime, and
the 3D prime cases.

Prime Case

The 2D prime case of the algorithm is developed below. For this case the hyperplane
algorithm reduces to the line algorithm. In section 1.3, the prime case of the line
algorithm was shown to be evaluated by the following two step piocedure.

1. Reduction stage. Compute the P + 1 summations:

P-1
adm = Y z(i,d — mi)
1=0
P-1
¥ = 3 2(di)
=0

2. DFT stage. Compute the P + 1 one-dimensional P—point DFT:
P-1

V(imt,t) = Ew}‘;‘a&m'”, m=0,1,...,P-1
d=0

P-1
V(t,0) = Y ol  t=0,1,...,P-1
d=0

The summation terms a{™") reduce the input data to the vectors that must be trans-
formed in order to obtain the output along the lines L((m,1)). The summation term
a{"® gives the vector that must be transformed to obtain the output along the line
L((1,0)). The computation of the P x P line algorithm on a broadcast mode multi-
processor is realized by the procedure of figure 3.3.
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. Assign the computation of the reduction operations a{*¥ evenly among M or
fewer PEs.

. Broadcast the rows of input data to the PEs and simultaneously compute the
reductions a!®*¥) at the PEs. The reduction operations are computed as follows:
When row i is received, the PE assigned a(!'?) sums the elements of the row and
places that sum in position i of a{'?. In a similar manner, the PE assigned
a(™1) rotates row ¢ mi positions to the right and sums it componentwise to the
other received rows. In this fashion a{™" will exist at position d of the first
row received. The rotation can be achieved by an address offset and modulo P

address arithmetic.

Note that the partial result due to row 1 s accumulated as Tow ¢ 1s received. In
this way each PE requires only O(N) storage for each a'®¥) it is assigned.

. In parallel, each PE computes a P—point 1D DFT for every reduction a(*¥
assigned to it.

. Upload data to host. There is some redundancy in the data, and the data is
permuted among the PEs.

Redundancy: For this case, the redundancy is trivially that output point V(0,0)
is common to every PE.

Permutation: The permutation is that every PE contain a line of output data as
specified by theorem 1.3.1. The row 0 and column 0 are in the PEs which
computed the al®!) and a(*®) terms, and are not permuted. Element [ of the
vector produced by the PE that computed a(™?) is the column ! and row
(N — ml)mod P element of the 2D DFT.

Figure 3.3: 2D P x P multiprocessor mapping of the line algorithm.
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To obtain a measure of the performance of the algorithm, allow a comparison of
a multiprocessor with P + 1 PEs running the parallelized line algorithm to a single
processor computing the row column algorithm. Let the computational burden of
the reduction stage be taken simultaneously with the data download. Each reduction
operation for the 2D P x P case requires O( P?) additions. Then the speedup of the
parallel line algorithm on P + 1 processors relative to the row-column method on a
single processor is
2.P-FFT(P)

= 2P.
FFT(P)

The algorithm achieves a 2P speedup with P + 1 processors rather than the expected
P speedup because the number of 1D DFT has been reduced from 2P to P + 1. The
justification for not including the time cost of the additions of the reduction stage is
that these additions are concurrent with the data download operation, which is common
to both algorithms and can not be parallelized.

The performance improvement of the algorithm depends entirely on the computa-
tion of the reduction operations in parallel with the data download. Consider that a
single processor computing just the reduction stage of the line algorithm would require
O(P?) additions. Below, the mapping of the 2D power of prime and 3D prime cases of
the algorithm are considered.

Speedup =

Power of Prime Case

This section gives the power of prime case of the algorithm specialized for 2" x 2"
2D DFT. The main differences between the prime and power of prime cases are the
computation of the reduction stage, and the removal of redundant data. The power of
prime case of the line algorithm is given below.

1. Reduction stage. Compute the 2" + 2"~! summations:

-1

™ = Y z(i,d — mi)
1=0
-1

= Y z(d - 2si,i)

=0

(1,29)
ay

2. DFT stage. Compute 2" 4 2"~! one-dimensional 2" —point DFT:
2n-1
Vimt,t) = 3 w*a{™, m=0,1,...,2" -1
d=0
2n-1
Vit,2st) = Y wd'a,(il‘o), s=0,1,...,2"1 -1
d=0

t=0,1,...,2" -1
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The computation of the a!™!) terms is the same as the prime case. That is, when
row i is received, the PE assigned a{™") rotatzs it mi positions to the right, and adds
component-wise to the previously received rows. This compresses the data so that the
storage requirement for this stage is only that of a single row.

The computation of the a{!'?*) terms is similar. The PE assigned a(:?*) rotates
column ¢ 2s: positions to the right, and adds component-wise to the other columns.
The problem this introduces is that the data is downloaded in row major order. The
following procedure computes the a!'?*) terms given row-major data.

Let a be the maximum such that 2%|2s, and let z(i, j) denote element j of row i. As
row : is received, the PE sums all elements of the row which are 2"~ positions apart.
There will be 2"~ such sums each of 2* elements. These can be expressed as

20 -1
ci= 3y x(i, 1+2"°k), 1=0,1,...,2"* - 1.

k=0

The I of these 2"~* sums of the elements of row i are accumulated with the (i +
2sl)mod 2" element of a{'?*). Essentially, the c;; terms of any a(*'*) are computed
by striding through a received row by 2*~* and forming an accumulated sum of those
points. The following example illustrates this procedure.

Ezample: Consider a 4 x 4 2D DFT. The reduction operations a(!?*) are required
for s = 0,1.” Using the procedure outlined above, the reductions are formed from
downloaded rows in the following manner.

For s = 0, the maximum « such that 22|0 is n. The PE assigned this term must add
elements of each row that are 1 apart; all elements of each row received are summed
together. The term af,l‘o) is the accumulated sum of row d.

For s = 1, the required reduction operation is a(?*). The maximum a such that
2%|2s is @ = 1. As row i is received, the PE sums elements which are 2 positions apart.
There will be 2 such sets formed for each row. These are:

€00 = Z9,0 + Zo,2 Co,1 = Zo1 + To,3
C10=ZT10+ 12 €1 =T11+ 13
C20 = T20 + I22 C21 = T21 + T23
Cio = Z30 + 3.2 €31 = Z31 + Z33.

(1.2)
d

After row ¢ is received and the ¢;; are formed, the elements of a are given as:

(1.2) _
ay " = Coo + €21
(1,2)

a =10+ C31
(1.2) _

a; """ =cC0+ Coa
(1.2)

a3’ =c31+ -
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This finishes the reduction stage of the algorithm. The 1D DFT are performed on
points

to complete the computation.
(W]

As in the prime case, when the computation is complete there are some output
points that appear in more than one processor. The procedure of figure 3.4 allows the
data to be uploaded with the redundant points removed. In the procedure, L{(z,y)) de-

notes the line of output computed by the PE that was assigned the reduction operation
(z.v)
al®v),

1. Upload all points of the line L((0, 1)).

o

For each a = 0,1,...,n — 1, define j =2%,...,2°*! — 1 and upload all points on
the lines L((j,1)) except multiples of 2"~

3. Upload all points of the line L({(1,0)) except (0,0).

4. Foreach a =0,1,...,n — 2, define k = 22,...,2°+! — 1 and upload all points on
the lines L((1,2k)) except multiples of 2"~2~1,

Figure 3.4: 2" x 2" data upload procedure.

Ezample: Consider a 4 x'4 2D DFT. The array below shows the effect of the upload
strategy of figure 3.4 on the set of covering lines. The leftmost column of the array
enumerates the lines L((z,y)) that cover the output array. All elements of the vector
L((x,y)) are listed in the corresponding row of the array. The elements that are not
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uploaded are boxed.

L((0,1)) Voo Vou Vo2 Voa

L((1,1)) [Voo] Vin Va2 Vi3s3

L((2.1)) |Voo| Vaa [Voz| Vaa

L((3.1)) |Voo| Vsu |Va2| Vis

L((1,0)) |Voo| Vie Vao V3o

L((2,0)) |Voo| Via |Vaz2| Va2

Observe that all the elements of any vector (line) not uploaded from a PE are multiples
of 2 apart.
a

Note that line algorithm required 6 1D DFT to compute the DFT of the example.
This compares to the 8 1D DFT required by the row-column algorithm. Given that the
additions of the reduction operations are performed concurrently with the input data
download, a 6 PE machine could compute this DFT in the time required for the data
upload and download, plus the computation time for one 1D DFT. This represents
a speedup in the DFT computation of 8 relative to a single processor executing the
row-column method.

If the allowed granularity is no smaller than a 1D DFT the maximum degree of
parallelism of the row-column method is only 4, even though 8 1D DFT are required.
This is due to the fact that the 1D DFT of the second stage (ie. column) are dependent
on the first stage. On a 4 PE machine, the row-column method woutd require time
for the data upload and download, time for 2 1D DFT, and time for a global data
transpose that requires every PE to exchange data with every other PE. If we assume
that the global transpose requires zero time, then the speedup of this method relative
to a single processor computing the row-column method is 4.

The parallelized row-column method for N x N 2D DFT, N = 2", gives a linear
speedup limited by N (disregarding transpose time). The parallel line algorithm attains
speedup of 2N given 3N /2 PEs. This "super linear” performance is due to the reduction
of the number of 1D DFT from 2N to 3N/2 and to the fact that the additions of the
reduction stage were counted with the communication operations of the data download.
The major limitation of this method is that it does not scale to machines whose degree
of parallelism is lower than 3V/2. This constraint will be eliminated in later sections.
Before proceeding to that work the 3D prime case of the algorithm is discussed.
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3D Case

The general mapping of the 3D prime case of the hyperplane algorithm is presented
below. The primary motivation for the algorithm is that it exchanges increased com-
putation time (larger granularity) for a decreased degree of parallelism relative to the
parallel line method (k=1).

The example covered in this section is the 3D P x P x P DFT, where P is a prime
number. If the line algorithm were applied (case of k = 1), a number of lines equal to
P? + P + 1 would be required to cover the output array, and therefore a like number
of processors is needed. To reduce the degree of parallelism of the computation, take
k = 2 and compute planes of the output. For this case the degree of parallelism is P +1
(number of planes in a covering set) and the granularity is a single P x P 2D DFT.

In the previous section the convention that data was input to the machine in row-
major order was adopted. In order to remain consistent with this convention it is
necessary to consider a different set of covering planes that those given in theorem
2.2.1. Allow the covering planes to be given by

Hy((0,m. 1)) = {(s1, s2m, s2) : 81,82 € Z/P},
H,((0,1,0)) {(s1, 52,0) : 81,82 € Z/P}, (3.1)
m=20,1,...,P - 1.

Various data flows can be obtained by permuting the order of the components of the
hyperplanes of theorems 2.2.1 and 2.3.1. In order for the sets to maintain their covering
property each hyperplane must be permuted in the same way.

For the hyperplanes of (3.1) the algorithm is given by the following procedure:

1. Reduction stage. Compute the P + 1 summations:

'1:

H .
ag ™ = 3 w(dr,i,dz — mi)

H((0.1,
adl(,t(i(g) 1on = Z I(dla d2’ l)

1=0

.|vll
- O

2. DFT stage. Compute the P +1 2D DFT:

P-1 P-1

. . _ H((0,m,1 d d
V(sy.s3m,s;) = Z Z d‘((z N,odi 0 7
d|=0d2=0

pimd il H((0.1.0),,
< — d d
V(b],b'z.O) — Z: Z d. X s1dy ,%2 2’
dy=0dy=0

m=20,1,....P-1 and s,52=0,1,...,P—-1.
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r

The computation of the 3D prime algorithm on a multiprocessor is essentially the
same as the 2D case given in figure 3.3. They key differences between them are the
evaluation of the reduction operations and the removal of the redundancy in the data
upload. These are specified below.

Assign the P+1 reduction operations a”’ to the PEs. During the download operation
the rows of input data are broadcast to the machine. Let row (7, r;) denote the P input
points Z(r, r,.0)s -+ - » £(r,,r; p—1) Of the input array. The PE assigned the computation of

H((0,1.0
adl"(i2 )

forms an accumulated sum of the elements of row (ry, ;) when it is received. That sum
is placed in location (ry,r;) of af’l(®19). The computation of this term requires one
addition for each word input to the PE, and is completed when the last input enters
the PE.

The PEs assigned the computation of the a#((®™1) terms compute as follows: When
row (ry,72) of the input is received it is rotated mr; positions to the right and summed
componentwise with the elements of row r; of a#((®™ 1)) The rotation is achieved by
address offset and modulo N address arithmetic. Similar to the 1D case, the summation
operation compresses the data. Therefore the reduction stage requires the PE to have
storage for only P? points for each reduction operation assigned to it.

After the reduction stage is finished, the 2D DFT are performed on the af in each
PE. This completes the computation. The output is distributed among the PEs as
hyperplanes. There are outpnt points that were computed in more than one PE. It
is desirable that these be removed before the results are uploaded. The redundant
points are all on the the line L{(1,0,0)) of the output array. In order to eliminate these
points during the data upload, only one PE is required to upload the points on the line
L((1,0)) in its 2D output array. That is, only one PE uploads the transformed points
a(’){Oa a{{Oa cecy ag—-l,O‘

For the 3D prime case the multiprocessor hyperplane algorithm requires a degree
of parallelism equal to P + 1 and the granularity of a single 2D P x P DFT. Therefore,
the computational speedup relative to a single processor computing the row-column
method is
3-P2.FFT(P) 3P
2.P.FFT(P) 2~

This does not account for the data upload and download or the additions of the reduc-
tion operations that are performed simultaneously with the download.

For comparative purposes, consider a P processor machine computing the row-
column like procedure of figure 3.5. The modified row-column algorithm of figure 3.5
requires communication and computation stages. The communication stages include
the upload and download of data points, and the exchange on intermediate results
(global transpose). The computation stages are 1D and 2D DFT. If the 2D DFT
at each PE are computed by the row-column method, then this algorithm is seen to

Speedup =
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1. Broadcast two dimensions of data to each PE.
Compute 2D P x P DFT at each PE.
Globally transpose the data in the machine.

Compute 1D DFT on the remaining dimension.

oUW

Upload the data.

Figure 3.5: A modified row-column 3D algorithm.

require the time to compute 3P 1D DFT. Its computational speedup relative to a single
processor computing the row-column method is

3-P?. FFT(P) _

3P FFT(P) 0

Speedup =

The P processor implementation of the row-column like procedure of figure 3.5 has
a speedup of P, but the P + 1 processor implementation of the hyperplane algorithm
has a speedup of 3P/2. The hyperplane algorithm achieves a 50% improvement over
the row-column method at the cost of only a single processor. The advantage of the
hyperplane method is due to its overall reduced number of DFT relative to the row-
column method.

Conclusion

This section demonstrated a multiprocessor algorithm for MD DFT computation. The
algorithm is based on a direct mapping of the hyperplane algorithm to the multipro-
cessor architecture. The algorithm is shown to naturally partition the d—dimensional
DFT into M independent computations, M equal to the number of k—dimensional
hyperplanes required to cover the d—dimensional array.

For multiprocessor architectures a mapping is given that requires no interprocessor
communication, and allows the M independent computations to occur concurrently
with the input download. On single I/O channel machines that are capable of exploiting
the full degree of parallelism of the algorithm, execution times as low as the time to
compute a single one dimensional FFT on N points, plus the time to upload and
download the data are attainable. If task level pipelining is used, average times equal
to the single channel I/O limit occur, but single task completion times are longer.
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Furthermore, if the input data is real, the only stage of the algorithm that inputs
complex data is thé data upload.

The primary benefit of the algorithm was seen to be that it requires no interprocessor
communication. The primary limitation of the algorithm is that it does not scale
flexibly to the degree of parallelism of the target processor. This issue is addressed in
the next section.

41




Chapter 4

A Hybrid Algorithm for the Multiprocessor Computation of MD DFT

This chapter combines the hyperplane and multidimensional Cooley-Tukey algorithms
to produce a highly scalable broadcast mode multiprocessor algorithm. The main
features of the algorithm are that it requires no interprocessor communication, and
that it maps to machines of varying degrees of parallelism. The cost of eliminating
interprocessor communication by this method is that one addition must be performed
at each processing element for each input broadcast to the machine.

Overview

In previous sections the k—dimensional hyperplane algorithm was mapped to a broad-
cast mode multiprocessor machine model. The parallel algorithm that resulted requires
no interprocessor communication. However, in order to exploit that benefit, the num-
ber of processors in the machine has to equal the number of k—dimensional hyperplanes
required to cover the d—dimensional output array. For many cases this can be a large
number. Consider that the power of prime case (including 2) of the algorithm requires
the degree of parallelism of the machine to be

Pn d-k Pd—k+l -1
(T) ( P-1 ) ’
The granularity of the corresponding computation is a single
k—dimensional DFT of size (P")*.

For a given problem size the only means available for adjusting the degree of par-
allelism is to alter k. The effect this has on the algorithm is to change the dimension
of the hyperplanes used to cover the output array. An increase in k increases the gran-
ularity of the computation performed at each PE by increasing the dimension of the
required DFTs. This increase in granularity is accompanied by an associated decrease
in the degree of parallelism required by the algorithm.

Using this method, the tradeoff between granularity and degree of parallelism is

limited to powers of P*. That is, for an increase in dimension of 1, the size of the
computation increases P times and the degree of parallelism decreases roughly P
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times. At the limit £ = d — 1, this method allows a minimum degree of parallelism of

(52

The corresponding granularity of the computation performed at each PE is a (P™
DFT. For the N = 2" case, the minimum degree of parallelism is 3N/2, and the
corresponding granularity is a single d — 1 dimension DFT of size (N)4-!.

The primary limitations that result from manipulating only the dimensionality of
the problem are: (1) that the degree of parallelism can only be scaled by powers of P",
and (2) that there are only d — 1 possible mappings of the algorithm.

One method for obtaining increased control over the degree of parallelism of the
algorithm is to modify the order (size) of the computation in each dimension. This
can be done using multidimensional Cooley-Tukey (MD CT) / vector-radix techniques.
The feature of the MD CT algorithms central to this work is that they can factor a
d—dimensional DFT into stages of lower order d—dimensional DFT.

In the next section an algorithm that marries the hyperplane algorithm to the
MD CT algorithm is introduced. The resulting hybrid algorithm uses the MD CT
algorithm to reduce the order of the computations performed in each dimension, and
the hyperplane algorithm to reduce the number of dimensions. The hybrid algorithm
requires no interprocessor communication, and can be scaled to match the degree of
parallelism of the target machine.

)d—l

4.1 Derivation

The hybrid algorithm will be developed as follows: First the structure of the MD CT
factorization is reviewed. Then a nesting of the hyperplane algorithm within the MD
CT factorization is given that permits the MD DFT to be computed with a reduced
degree of parallelism and no interprocessor communication.

MD CT Components

The structure of the MD CT (vector-radix) factorization of the 2D nxn DFT wheren =
rs is given by the block diagram in figure 4.1. The diagram describes the relationship
between the first and second DFT stages of a MD CT factorization for n = rs. In
the diagram, each DFT of a stage is identified by a rectangle with an index (z,y)
affixed to it. DFT 7 of stage two refers to the DFT whose index (z,y) is the i** taken
lexicographically. The diagram shows graphically that input j to DFT i of stage two
is from output i of DFT j of stage one.

The computation and data flow of 4.1 are defined in terms of the decomposition
of the input and output index sets. The procedure below defines the computation in
terms of the coset decomposition of the index set.
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Figure 4.1: Flow diagram of an n x n 2D FFT factorization for n = rs.

1. Computation of d—dimensional DFTs F;. Each of these is performed on a coset
of the input with respect to the subgroup sZ/n.

2. Twiddle multiplications. The element a of the input coset u that was transformed

in step (1) is multiplied by wgi*! - - - w3d¥d.

3. Computation of d—dimensional DFTs F,. Each of these produces a coset of

output with respect to the subgroup rZ/n. The input and output subgroups are
dual.

This procedure relates directly to the diagram of figure 4.1. The DFTs of stage
one of the figure correspond to the F, of step one of the procedure, and the DFTs of
stage two of the figure correspond to step three. Step two of the procedure defines the
twiddle multiplications. The diagram shows the input points to each DFT of stage one.
The DFT labeled (0,0) is seen to be computed on the points whose indexes are given
by the set

{(z,y) : (z,y) € sZ/n x sZ/[n}.
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Similarly, the DFT labeled (0, 1) is computed on the points whose indexes are in the
set

{(z.y) +(0,1) : (z,y) € sZ/nxsZ/:j.

That is, the input data for the DFT labeled (0,0) are the points whose indexes
are the subgroup sZ/n of Z/n, and the input data to the DFT labeled (0,1) are the
points whose indexes are the (0,1) coset of the decomposition of Z/n with respect to
the subgroup sZ/n. In general the input to the DFT labeled (z,y) is coset (z,y) of
the decomposition. The cosets of the decomposition of Z/n with respect to sZ/n can
be enumerated by v € Z/s x Z/s. In this way F, number u is said to transform coset
u of the input array.

The second stage of DFT can be described in a similar way. The difference between
the stages is that the DFTs of stage two each produce a coset of the output array with
respect to the subgroup rZ/n xrZ/n. The cosets in this decomposition are enumerated
by a € Z/r x Z/r. In this way F, number a produces the coset a of the output array.
These are the output points whose indexes are given by

{(z,y) + (a1,a2) : (z,y) € rZ{n x rZ[n}.

Above, the input and output data flow has been described in terms of the decomposition
of the input and output index sets. Below, the data flow between DFT stages is
described in terms of those same decompositions.

The output of each F, of stage one is associated with the index set a € Z/r x Z/r.
These correspond to the indexes marked on the left column of the stage one DFT in
the diagram. Similarly, the input to each DFT of stage two is associated with the index
set w € Z/s x Z/s. These correspond to the indexes marked on the right column of the
DFT of stage two. Using these associations, the data flow between the DFT stages can
be described in terms of the decompositions of the input and output index sets. Recall
from the discussion above that an F, of stage two is labeled by a € Z/r, and an F,
is labeled by u € Z/s. Then the F, associated with coset a of the output array takes
its input u from the output g of the F; associated with input coset u. This relation is
depicted graphically below.

a

e

Fy u a F

Evaluating the MD DFT by the factorization of (4.1) requires computing DFT
stages composed of F, and F,. The inputs to the i** F, were shown to be the collection
of i** outputs of every Fy. Let that F, be assigned to a PE in a multiprocessor. The
PE can evaluate that F; if the i** point from every stage one F; is available at the PE.
Below, an assignment of the hyperplane algorithm to the DFTs of stage one is given
that satisfies this criterion.
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Hyperplane Compaonents

The multiprocessor hyperplaue algorithr developed in the previous sections of this
chapter will be applied to the computation of the DFTs of the first stage of the MD CT
factorization. Before proceeding with the development of the algorithm, first consider
the computation of a single F; by that method.

Assume that F; is of the same size in d — k + 1 dimensions, and let ry = -+ = r,.
Then the indexing set of F; may be written

C=2/r=2Z[r1 x---xZ[rg=AxDB,
A=2Z[ry x - X Z[ri_1 X Z[7g,
B = (Z/ro)**.

The number of k—dimensional hyperplanes required to cover the

d—-dimensional array C = Z/r is denoted M(r). Let the number of PEs in the machine
be M(r), and recall that on such a machine the DFT F, may be computed by the
procedure listed below.

1. Assign one hyperplane of the covering set to each PE.

2. Broadcast the inputs to the machine, and simultaneously compute the reduction
operations.

3. Compute a single k—dimensional DFT over A.

Figure 4.2: Computation of F; at a PE.

After this procedure is complete each PE has its own k—dimensional hyperplane
of the outputs of the F;. For each of the remaining F, of stage one, apply the same
assignment of hyperplanes to PEs that was used for the first F,. These DFTs are
computed in the same manner as the first.

When the computation of this stage is complete, every PE has one k—dimensional
hyperplane from each F, of stage one. Since each PE was assigned the same hyperplane
in every F,, the PE that has point a from the first F, has point g from every F, of stage
one. In the previous section these were shown to be the points needed to compute coset
a of the output partition. The PE generates coset g of the output partition by applying
the appropriate twiddle multiplications to the stage one outputs, then computing a
single d—dimensional DFT F;.

Below an example is given to illustrate this procedure. The example is for a 9 x 9
2D DFT computed on a four PE broadcast mode multiprocessor.
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Ezample: Consider the problem of computing a 9x 9 2D DFT on a 4 processor machine.
A direct mapping of the line algorithm (k = 1 case of the hyperplane algorithm) for
this computation would require 12 processors. However, the hybrid algorithm using a
3 x 3 factorization requires only 4 processors. This algorithm will be developed below.

The computation depends on the evaluation of the 3 x 3 2D DFT Fj3, by the line
algorithm. That computation is

z=F3z

=

and is described by the example at the end of section 1.3. The output array of the
3 x 3 2D DFT is given by four lines. These are:

L((O, 1)) = {Zo,o y 20,1, Zo,z}
L((1,1)) = {z00, 211, 222}
L((2, 1)) = {Zo.o y 22,1, 21,2}
L((LO)) = {Zo,o, 21,0, 22,0}

Each of these lines is assigned to a different processor. Let the output on the lines
L((m,1)), m = 0,1,2 be computed by PE,,, and the output on the line L((1,0)) be
computed by PE;. As the inputs are broadcast to the machine, each PE computes
the reduction operation a(*¥) associated with its assigned line of the output. After the
broadcast is complete, each PE performs a 3—point DFT to produce its set of output
points. Each of the 3 x 3 2D DFT of the first DFT stage of the factorization are

computed in this way.

The 9 x 9 2D DF'T factored into stages of 3 x 3 DFT is given by [14]

Stage 2
T2 2 o
Y(ai +3b,a2+3b) = Y, Y wihwihwgriwgre (4.1)
uy=0uy=0
2 2
. Z Z I(3p1 + u1,3p2 + ug)wg”"wg"”
pi=0m=0 B

T—

Stage

The first stage of DFT of this factorization requires the computation of nine 2D 3 x 3
DFT. The inputs to these DFT are listed in the arrays below. Each of the arrays is
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labeled above by the index of its first element in parenthesis.

(0,0) (0,1) (0,2)
Lo, Ao.s @06 AR AOA @o.7 (xlo.2 Ao,s @os
T30 I33 I3s I3,1 T34 I3,7 I3,2 I35 I3s
Teo T3 Te6s ITea Tegq Te7 ITe2 Tes Teg
(1,0) (1,1) (1,2)
&0 AI.S @6 FPR Am @7 izl , AI,S @18
Ts0 Ty3 T4a6 T4 Ta44 IT77 Ta2 Ta45 Tas

T70 IT73 I7s

Iy T74 T77

I72 I7s I78

(2,0) (2,1) (2,2)
FAPR) Az.s @26 FAPR Am @27 FAPP Az,s @28
Tso Ts53 Ise Is1 Is4 Is57 Is5,2 Iss Tss
Igo Tg3 T=re Ig1 Ig4q4 X7 Ig2 Igs Tgs

This partition of the input elements results from decimating both dimensions of the
array simultaneously. Each array of the partition is a coset of Z/9 x Z/9 with respect to
the subgroup 3Z/9 x 3Z/9. The label above each array is its cose* leader. Throughout
this example, the arrays will be defined and referred to as cosets, and distinguished by
their coset leaders.

Each of the nine required 3 x 3 2D DFT of stage one are computed by the multipro-
cessor line algorithm as described above. The lines are taken over each of the cosets.
The assignment of lines to PEs is the same for each of the cosets. The PE assigned line
L((0,1)) in coset (0,0) is assigned line L((0,1)) in every coset.

For simplicity of presentation, allow the input data to be broadcast to the PEs
by coset. Then the reduction operations are performed simultaneously with the Jata
download. Each PE performs one addition for each word it inputs. As all the points
of a coset are received, the associated reduction operation is completed. When the
download is finished the PE performs nine independent 3—point 1D DFT to complete
stage one.

Consider the computation of the line L((0,1)) in each coset of the input partition.
For each coset downloaded the PE computes the required reduction operation. When
the download is complete, the PE performs the 1D DFT. At this time the PE contains
all the stage one outputs corresponding to the first row of each coset shown above
(enclosed in rectangles). The appropriate twiddle multiplications are applied at this
time.

The second stage of DFTs requires computing nine 3 x 3 2D DFT. To obtain all
output points by the method described in this section, each PE must compute three
3 x 3 2D DF'T. For the PE assigned line L((0,1)) of each stage one coset, one 2D DFT
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is computed for each element in the line. That is, the first 2D DFT is performed on all
points enclosed in squares, the second is computed on all points enclosed in triangles,
and the third 2D DF [ is computed on all points enclosed in circles. After this stage of
2D DFT is complete, the entire computation is distributed by output coset throughout
the machine. This permutation is similar to the permutation that results from a typical
application of the vector-radix algorithm.
0

The factorization of the 9 x 9 2D DFT given in the example above contains 18 Fj3
2D DFT. If each of these were evaluated by the row-column method there would be
108 FFTs of 3—points each. Assume the reduction operations of the line algorithm are
performed concurrently with the input download and the communication time is not
considered, then the computational speedup of the hybrid algorithmm of the example
relative to a single processor computing the 3 x 3 factorization is

108 FFT(3) _
2TFFT(3)

which is the ideal linear speedup, and requires no interprocessor communication.

The multiprocessor computation of F, was described in previous sections of this
chapter. The procedure that follows describes the multiprocessor computation of Fy,
factored into stages of F, and F.

Speedup =

1. Associate one k—dimensional hyperplane of Z/r with each PE. The required
hyperplanes are given by theorems 2.2.1 and 2.3.1. A hyperplane represents a
subset of the output of a single F;.

2. The input is partitioned into cosets with respect to the subgroup sZ/n. These
are enumerated by u € Z/s. Each corresponds to an array Z/r. Assume for
simplicity of presentation that the input has been ordered by coset.

3. Broadcast the input to the machine. As coset u is input, each PE computes the
reduction operation af corresponding to the hyperplane assignment of step (1).
For each coset, this step is identical to the multiprocessor computation of a single
F,. When this step is complete, s independent reduction operations a” have been
computed by each PE.

4. Compute a number s of k—dimensional DFT at each PE. Each k—dimensional
DFT is computed on the output of a reduction operation from step (3). Each
produces the hyperplane of the coset associated with the PE in step (1).

5. Apply the twiddle multiplications.

6. Compute independent DFTs F, at each PE. There are s k—dimensional hyper-
planes in each PE. Each hyperplane has | A| points. {A| DFTs are performed. For
z € A, a DFT F, is performed on the collection of all points with index z from
each hyperplane in the PE. After this step the computation is complete.
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7. Data upload. The output is distributed among the PEs according to the coset
decomposition of Z/n with respect to the subgroup rZ/n. This is a normal
vector-radix {14] permutation. The cosets are enumerated by a € Z/r. Ifa € Z/r
is contained in the k —dimensional hyperplane associated with the PE in step (1),
then output coset a is also contained in the PE. Cosets of output are redundant
exactly the same way that points are redundant in the computation of a single F;.
When it is desirable, the redundancy can be eliminated in an analogous manner.

4.2 Conclusion

This chapter presented a new algorithm for the multiprocessor computation of the
MD DFT. The algorithm is based on the paralellization of the hyperplane algorithm
introduced in chapter 2. It is intended for multiprocessors connected to a single 1/0
channel. The target processor must support the communication functions broadcast
and report.

Implementations of the algorithm are considered for two basic situations. The
first is when the degree of parallelism of the target processor matches one of Mi(n),
k=1,...,d—1. Where M;(n) is the number of k—dimensional hyperplanes required to
cover Z/n. For these cases the algorithm is shown to require the time to compute one
k—dimensional DFT plus the time to input and output the data. Computationally, the
speedup of the algorithm is the ratio of a d—dimensional DFT to a single £ —dimensional
DFT.

The second case of ine algorithm applies when the size of the machine does not
match Mi(nr). That is, the degree of parallelism of the algorithm is not compatible
with the size of the machine. For this case the hyperplane algorithm is married to the
multidimensional Cooley-Tukey algorithm (MD CT). The role of the MD CT algorithm
in the hybrid algorithm is to factor F, into stages of F, and F,, where each n, is
the composite n; = r;s;. For this case the degree of parallelism is one of M(r), for
k=1,...,d = 1. In this manner the degree of parallelism of the computation can be
modified to match the size of the target processor. Like the direct method, the hybrid
algorithm requires no interprocessor communication.
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Chapter 5

Program Results

This research program developed a new algorithm for the multiprocessor computation
of d—dimensional discrete Fourier transform. The main features of the algorithm are
that it requires no interprocessor communication and that it is highly scalable. The
motivation for this research program, and the elements that were required to realize it
are described below.

This research program has been driven by the need for new algorithmic meth-
ods that can exploit the power of VLSI based multiprocessors. These machines have
large computational power but limited communication bandwidth. They strongly fa-
vor algorithms that minimize interprocessor communication. This principle of locality
dominates algorithm design at all levels.

Multidimensional Cooley-Tukey algorithms, and their variants, require interproces-
sor communication because they partition the data set at every stage of the compu-
tation. At a minimum this necessitates an interprocessor communication requirement
where every processing element must exchange data with every other processing ele-
ment to complete the calculation.

This research approaches the problem of parallel MD DFT computation from a
new perspective. It applies a reduction rather than a partitioning algorithm to MD
DFT computation. The result is that no interprocessor communication is required
from input to output. This eliminates the need for an interconnection network for
parallel MD DFT computation. These networks are the slowest, most costly, complex
and energy inefficient elements of the multiprocessor system. The method developed
in this program is nearly linear in speedup, it is highly scalable, and it requires no
interprocessor communication.

The method is based on a hyperplane algorithm for MD DFT computation. The
hyperplane algorithm is introduced in chapter 2. It is derived by restricting the d—di-
mensional DFT to k—dimensional hyperplanes of the output array. The algorithm is
developed in two parts. The first part is the specification of a minimal set of k—dimen-
sional hyperplanes that cover a d—dimensional array. These are given by theorems
2.2.1 and 2.3.1 in sections 2.2 and 2.3 respectively. The second part of the derivation
is the restriction of the d—dimensional DFT to the hyperplanes of a covering set. The
formulation of the resulting algorithm is given by equations (2.20) and (2.21) or (2.34)
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and (2.35). An appendix to chapter 2 is provided that enumerates 3D and 4D cases of
the algorithm.

A broadcast mode multiprocessor algorithm based on a direct mapping of the hy-
perplane algorithm is given in chapter 3. The main advantage of this algorithm is that
it eliminates the need for interprocessor communication in MD DFT computation. The
cost of eliminating the communication requirement typical of parallel MD DFT algo-
rithms is that one addition must be performed at each processor for every input loaded
into the machine. The algorithm requires a machine whose degree of parallelism equals
the number of k—dimensional hyperplanes required to cover a d—dimensional array.
That number is given by theorems 2.2.1 and 2.3.1 of chapter 2. This imposes limita-
tions on the degree of parallelism of the target machine which are circumvented by the
alternative mapping of chapter 4. The structure of the direct mapping algorithm is
given by the procedure of figure 3.2.

Chapter 4 presents an alternative multiprocessor mapping of the hyperplane algo-
rithm that requires no interprocessor communication and is also highly scalable. The
algorithm is derived by applying hyperplane and multidimensional Cooley-Tukey meth-
ods together. The resulting algorithm uses Cooley-Tukey methods to lower the order
of the MD DFT stages that the hyperplane algorithm is applied to. The degree of par-
allelism of ihe algorithm is equal to the number of hyperplanes required to cover one of
the lower order MD DFT of the Cooley-Tukey factorization. Like the direct mapping
algorithm the hybrid algorithm requires no interprocessor communication. The cost of
eliminating interprocessor communication by this method is that one addition must be
performed at each processing element for each word loaded into the machine.
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